Search results for "Volcanic degassing"
showing 10 items of 33 documents
Sustaining persistent lava lakes: Observations from high-resolution gas measurements at Villarrica volcano, Chile
2016
International audience; Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake i…
Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna
2017
Erratum to: Bull Volcanol (2017) 79: 36DOI 10.1007/s00445-017-1114-zDuring the steps of corrections, the publisher inadvertently changed the author affiliations so that they were no longer correct. The correct information is given below. The publisher regrets this mistake.; International audience; Volcanic gas emission measurements inform predictions of hazard and atmospheric impacts. For these measurements, Multi-Gas sensors provide low-cost in situ monitoring of gas composition but to date have lacked the ability to detect halogens. Here, two Multi-Gas instruments characterized passive outgassing emissions from Mt. Etna’s (Italy) three summit craters, Voragine (VOR), North-east Crater (NE…
Mercury emissions from soils and fumaroles of Nea Kameni volcanic centre, Santorini (Greece)
2013
There have been limited studies to date targeting mercury emissions from volcanic fumarolic systems, and no mercury flux data exist for soil or fumarolic emissions at Santorini volcanic complex, Greece. We present results from the first geochemical survey of Hg and major volatile (CO2, H2S, H2O and H-2) concentrations and fluxes in the fumarolic gases released by the volcanic/hydrothermal system of Nea Kameni islet; the active volcanic center of Santorini. These data were obtained using a portable mercury spectrometer (Lumex 915+) for gaseous elemental mercury (GEM) determination, and a Multi-component Gas Analyzer System (Multi-GAS) for major volatiles. Gaseous Elemental Mercury (GEM) conc…
Degassing and Cycling of Mercury at Nisyros Volcano (Greece)
2019
Nisyros Island (Greece) is an active volcano hosting a high-enthalpy geothermal system. During June 2013, an extensive survey on Hg concentrations in different matrices (fumarolic fluids, atmosphere, soils, and plants) was carried out at the Lakki Plain, an intracaldera area affected by widespread soil and fumarolic degassing. Concentrations of gaseous elemental mercury (GEM), together with H2S and CO2, were simultaneously measured in both the fumarolic emissions and the atmosphere around them. At the same time, 130 samples of top soils and 31 samples of plants (Cistus creticus and salvifolius and Erica arborea and manipuliflora) were collected for Hg analysis. Mercury concentrations in fum…
Degassing at the Volcanic/Geothermal System of Kos (Greece): Geochemical Characterization of the Released Gases and CO2 Output Estimation
2019
Forty-five gas samples have been collected from natural gas manifestations at the island of Kos—the majority of which are found underwater along the southern coast of the island. On land, two anomalous degassing areas have been recognized. These areas are mainly characterized by the lack of vegetation and after long dry periods by the presence of sulfate salt efflorescence. Carbon dioxide is the prevailing gas species (ranging from 88 to 99%), while minor amounts of N2 (up to 7.5%) and CH4 (up to 2.1%) are also present. Significant contents of H2 (up to 0.2%) and H2S (up to 0.3%) are found in the on-land manifestations. Only one of the underwater manifestations is generally rich in N2 (up t…
Understanding Degassing Pathways Along the 1886 Tarawera (New Zealand) Volcanic Fissure by Combining Soil and Lake CO2 Fluxes
2019
CO2 flux measurements are often used to monitor volcanic systems, understand the cause of volcanic unrest, and map sub-surface structures. Currently, such measurements are incomplete at Tarawera (New Zealand), which erupted with little warning in 1886 and produced a ∼17 km long fissure. We combine new soil CO2 flux and C isotope measurements of Tarawera with previous data from Rotomahana and Waimangu (regions also along the 1886 fissure) to fingerprint the CO2 source, understand the current pathways for degassing, quantify the CO2 released along the entire fissure, and provide a baseline survey. The total CO2 emissions from the fissure are 1227 t⋅d–1 (742–3398 t⋅d–1 90 % confidence interval…
Forecasting Etnean eruptions by real-time observations of volcanic gas composition.
2007
It is generally accepted but not experimentally proven that a quantitative prediction of volcanic eruptions is possible from the evaluation of volcanic gas data. By discussing the results of two years of real-time observation of H2O, CO2 and SO2 in volcanic gases from Mt. Etna volcano, we unambiguously demonstrate that increasing CO2/SO2 ratios can allow detecting the pre-eruptive degassing of uprising magmas. Quantitative modeling by the use of a saturation model allows us to relate the pre-eruptive increases of the CO2/SO2 ratio to the refilling of Etna’s shallow conduits with CO2-rich deep-reservoir magmas, leading to pressurization and eruption triggering. The advent of real-time observ…
Steam and gas emission rates from La Soufrière of Guadeloupe (Antilles arc): implications for the magmatic supply degassing during unrest
2015
Since its last magmatic eruption in 1530 AD, La Soufrière andesitic volcano in Guadeloupe has displayed intense hydrothermal activity and six phreatic eruptive crises (the last of which, in 1976-1977, with 73000 evacuees). Here we report on the first direct quantification of gas plume emissions from La Soufrière summit vents, which gradually intensified during the past 20 years. Gas fluxes were determined in 2006 then 2012 [1] by measuring the horizontal and vertical distribution of volcanic gas concentrations in the air-diluted plume, the composition of the hot fumarolic fluid at exit (108°C), and scaling to the speed of plume transport (in situ measurements and FLIR imaging). We first dem…
Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone
2017
Abstract Emission of volcanic gas is thought to be the dominant process by which volatiles transit from the deep earth to the atmosphere. Volcanic gas emissions, remain poorly constrained, and volcanoes of Peru are entirely absent from the current global dataset. In Peru, Sabancaya and Ubinas volcanoes are by far the largest sources of volcanic gas. Here, we report the first measurements of the compositions and fluxes of volcanic gases emitted from these volcanoes. The measurements were acquired in November 2015. We determined an average SO 2 flux of 15.3 ± 2.3 kg s − 1 (1325-ton day − 1 ) at Sabancaya and of 11.4 ± 3.9 kg s − 1 (988-ton day − 1 ) at Ubinas using scanning ultraviolet spectr…
Hydrogen emissions from Erebus volcano, Antarctica
2012
International audience; The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03 kg s-1 (2.8 Mg day-1). The observed H2 content in the plume is consistent with previous estimates of redox cond…